Abrupt Transition to Strong Superrotation in an

Axisymmetric M odel of the Upper Troposphere

Karen M. Shell*
Scripps Institution of Oceanography, University of California, San Diego, CA
|saac M. Held
Geophysica Fluid Dynamics Laboratory/NOAA, Princeton, NJ

Submitted to Journal of the Atmospheric Sciences

June 3, 2004

*Corresponding author address:
Karen M. Shell
Univ. of California, San Diego
9500 Gilman Dr., Dept. 0224
LaJolla, CA 92093-0224
Tel: (858) 534-6966, Fax: (858) 534-8561
E-mail: kshell@ucsd.edu



Abstract

Abrupt transitions to strongly superrotating states have been found in some ideal-
ized models of the troposphere. These transitions are thought to be caused by feed-
backs between the eddy momentum flux convergence in low latitudes and the strength
of the equatorial flow. The behavior of an axisymmetric shallow water model with
an applied tropical torque is studied here to determine if an abrupt transition can be
realized without eddy feedbacks. The upper tropospheric layer is relaxed to a radia-
tive equilibrium thickness, exchanging mass and thus momentum with the non-moving
lower layer. For low values of the applied torque, the circulation is earth-like; however,
for larger values, an abrupt transition to a strongly superrotating state can occur. In
some cases, the system remains superrotating as the torque is subsequently decreased.
A simple analytical model is used to better understand the system. The bifurcation
is caused by a feedback between the applied torque and the strength of the Hadley
cell. As the torque increases, the strength of the cell decreases, reducing the damping

caused by momentum transfer from the lower layer.



1. Introduction

Given the zonal mean zonal flow «, one can compute the corresponding absolute an-

gular momentum about the axis of rotation
M = acos ¢(Qacos ¢ + u) (1)

where a is the radius of the planet, €2 the rotation rate, and ¢ the latitude. We use the
term superrotating to refer to an atmosphere in which M at some latitude or height
exceeds Qa?, the angular momentum of the surface of the planet at the equator. Since
the maximum angular momentum of the solid planet is found at the equator, a super-
rotating atmosphere achieves a value of M larger than any surface values. In order
for the circulation to be inertially stable, M must decrease poleward; thus equatorial
winds invariably have the greatest angular momentum. Therefore, on a counterclock-
wise rotating planet, an atmosphere is superrotating if and only if the winds at the
equator are westerly.

Maintenance of superrotation requires the transport of angular momentum from
areas of low angular momentum to the region of maximum angular momentum at the
equator. Assuming that such counter-gradient fluxes exist, the strength of the superro-
tation is then determined by the response of the processes that decelerate the equatorial
winds (e.g. poleward momentum fluxes or advection from regions of smaller A) to
the equatorial acceleration.

On the earth, the mean equatorial tropospheric winds are slightly easterly. Thus,
the earth’s troposphere is not superrotating. However, superrotation occurs during the
westerly phase of the Quasi-Biennial Oscillation (QBO) in the stratosphere, as well
as on other planets, such as Jupiter and Saturn, and on our sun. These cases raise the
question of whether the earth’s troposphere could be superrotating under somewhat
different conditions.

Strong superrotation has in fact been simulated in some simple models of the



earth’s atmosphere. Suarez and Duffy (1992) obtain superrotating states in a two-layer
model when they apply a zonally asymmetric tropical heating. For certain strengths
of the heating, they find multiple equilibria. Once superrotation is established in the
model, the system remains superrotating even if they remove the asymmetric heat-
ing. Saravanan (1990) uses a two-layer model as well but applies a zonally symmetric
torque rather than asymmetric heating to produce superrotation, so as to study the
feedbacks between eddy fluxes and equatorial winds in the simpler setting of a model
with a zonally symmetric climate. Suarez and Duffy (1992) and Saravanan (1990)
attribute the abrupt transitions to strong superrotation to a feedback between the equa-
torial acceleration (whether generated by asymmetric heating or an applied torque) and
the deceleration due to poleward eddy angular momentum flux in the tropics. Strong
winds make the tropics more transparent to Rossby waves, decreasing the strength of
the eddy deceleration. This weakened deceleration, in turn, results in stronger equato-
rial winds and a positive feedback.

Williams (2003) obtains superrotation in a dry multi-layer primitive equation model
by moving the location of maximum baroclinicity equatorward. Williams (2003) de-
scribes a different process than Suarez and Duffy (1992) and Saravanan (1990), at-
tributing the acceleration to an equatorward eddy flux generated by barotropic insta-
bility when the jet is close to the equator, but feedbacks with the background poleward
momentum fluxes still play a central role, resulting in abrupt transitions between a
superrotating and non-superrotating state.

Using an axisymmetric (no variation in the longitudinal direction) model, we ex-
amine a different feedback in a superrotating atmosphere, one that can occur in the
absence of wave-mean flow interactions. In order to obtain equatorial westerlies, we
specify a torque in the tropics. These superrotating equatorial winds are decelerated
by the Hadley circulation, which advects a smaller M from below. The strength of the

deceleration caused by the Hadley circulation depends on tropical temperature gradi-



ents and, therefore, on the wind speed at the equator. We are interested in whether
this feedback allows multiple equilibria for some ranges of the imposed forcing. Since
the equatorial zonal wind is always westerly when forcing is applied to this model,
we look for multiple steady superrotating states, one weakly superrotating and one
strongly superrotating, for the same set of parameters.

In order to illustrate the mechanism in the simplest context, we use a shallow
water model of the upper troposphere. We also provide a generalization of the Held-
Hou Hadley-cell theory to allow for non-zero equatorial winds and use this analytical
model to explain the shallow water results. By focusing on this axisymmetric feedback
mechanism, we do not mean to imply that the eddy feedbacks discussed elsewhere are
neither important nor dominant. However, we think it is useful to keep in mind this

axisymmetric mechanism as well.

2. TheModel

We model the troposphere using an axisymmetric one-and-a-half layer model. The
lower layer does not move, but it can affect the thickness and zonal velocity of the
upper layer through the exchange of mass. The upper layer is modeled using the
shallow water equations for a spherical isentropic layer. The model determines the
zonal velocity, u, meridional velocity, v, and thickness of the upper layer, h, as a

function of time, ¢, and latitude, ¢:
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where € is the rotation rate, a is the radius of the earth, & is the frictional parameter,

and g* is the reduced gravity. F' is an applied forcing, and the system is relaxed to a
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radiative equilibrium thickness, h.q(¢), with relaxation time 7 and resulting effect on
zonal momentum, R.

The relaxation of the layer thickness to the “radiative equilibrium” thickness, g,
simulates the effect of radiation on the system. The radiative equilibrium thickness
decreases away from the equator and then approaches a constant poleward of latitude
én:
hoeg — Qtigeqsin® ¢ (9] < ¢n)
hoeq — 43uoeqsin® ¢ (19| > o)

where hq,, is the radiative equilibrium thickness at the equator and w4 is the corre-

heq = (5)

sponding equatorial wind. This relaxation creates a Hadley circulation. In the tropics,
the layer thickness is generally smaller than the radiative equilibrium thickness, thus,
the relaxation term increases the layer thickness, corresponding to a mass flux from
below (i.e., the upward branch of the Hadley cell). In the subtropics, the layer thick-
ness is generally higher than the radiative equilibrium thickness, and the relaxation
term models the downward branch of the cell. We are interested in the interaction
between the Hadley cell and the tropical zonal wind, and since the high latitude profile
of h.q makes little difference to the results presented here, we simplify the problem by
restricting the winds to the tropics and subtropics. (If we were to use the sin? profile
at all latitudes, the layer thickness would become too small at the poles.)

The forcing F' for the system is an applied torque centered around the equator,
constant in time:

F = Fycos™ ¢, (6)

where Fy is the forcing at the equator, and n is used to vary the shape of the forc-
ing. We apply a torque in order to generate westerlies at the equator and study feed-
backs between the wind speed and the axisymmetric Hadley circulation. The forcing
mechanism is unspecified and unimportant for our purposes, since it is assumed not

to respond to the state of the upper layer. One can think of it as due to a longitu-



dinally asymmetric process, such as organized tropical convection, which produces
a low-latitude eddy momentum flux convergence. We have also generated solutions
in which acceleration in the tropics is balanced by deceleration in midlatitudes. The
results are essentially unchanged; the key quantity is the equatorial acceleration.

The term R represents the effect of mass exchange with the lower layer on the

momentum of the upper active layer. Setting Q = (heq — h)/7,

R —Qu/h (Q@>0) _ @)

0 (@ <0)

Air that is brought up from the lower layer carries with it the zero relative angular
momentum of that layer. Since there is normally rising motion at the equator, this
term provides damping of the westerly equatorial flow. Air that moves from the upper
layer down to the lower layer carries with it the momentum of the upper layer and thus
does not affect the upper layer momentum. One can think of surface friction as rapidly
returning the velocity in the lower layer to zero. R is equivalent to the vertical advec-
tion of zonal momentum in multi-level models. (Note that the momentum transport
associated with the mass flux should also affect the meridional velocity. However, we
have omitted this effect from Equation 3 because the model is always very close to
geostrophic balance.)

The deceleration of zonal wind by the upward advection of zero angular momen-
tum air in the rising branch of the Hadley cell is central to the model because it pro-
vides the potential for positive feedback as the applied forcing F' is increased. At
the equator, the applied force must be balanced by the combination of momentum
exchange R and frictional drag —ku. \We expect an abrupt transition to strong su-
perrotation if the combined deceleration provided by the momentum exchange and
friction fails at some point to offset the applied forcing. Since stronger forcing leads
to higher zonal wind speeds and thus stronger frictional drag, the upward mass flux

at the equator (2 must decrease sharply as the applied force F' increases in order for a



runaway positive feedback to occur.

The model is solved numerically using a centered in space, leapfrog in time scheme
with a Robert (asselin) filter to prevent time splitting. The grid is staggered, with u
and h gridpoints halfway between the v grid points. The poles correspond to v grid
points, and v is set to 0 there. The equator is a w and A grid point. Rather than solve
the u-equation directly, we actually solve the absolute angular momentum equation,
so that the advection of angular momentum accounts for the Coriolis and metric terms.

We then set
ou 1 oM

Ot acos¢ Ot

to determine the corresponding w tendency.
[Figure 1 about here.]

We search for stable equilibrium solutions of the model by integrating Equations 2
through 4 until we reach a steady state. The solid lines in Figure 1 show the steady state
of the model with no forcing. We use values of a = 6.37 x 106 m, Q = 7.292 x 105
rad/s, g* = 0.08g with g = 9.81 ms=2, 7 = 8 x 105 s, k = 1078 571, hgeq = 16500
m, ugeq = 60 M/s, and ¢, = 40.5°. Later, when forcing is applied, we use a forcing
shape factor n = 30 (see Equation 6), which results in a half width for the forcing of
roughly 12 degrees latitude. These are the default values for all runs.

It is difficult to make this shallow water model fully earth-like. Because the ob-
served isentropic slope roughly carries an isentropic interface from the surface in the
tropics to the tropopause at the pole, our layer thickness is inevitably large at the equa-
tor. As a consequence, the friction must be very weak to avoid diffusive domination.
To mimic the effects of a small gross moist stability (Neelin and Held, 1987) and the
associated strong meridional flow, one would require just the opposite, a very thin
layer in the tropics. If one tries to make the layer thinner to strengthen the flow, one

encounters problems with large Froude numbers, due to the fact that the transition to



no flow in the lower layer is occurring too rapidly in the vertical. More layers and
some representation of moist stability or latent heat transport are needed to create a
more realistic model. However, we believe that the feedback captured in this simple
dry model will be present in more realistic models of the Hadley cell if these models

are sufficiently inviscid.

3. Analytical Calculations

Before presenting solutions with non-zero F', we approximate the full system of equa-
tions with a simple analytical model in order to gain insight into the possibility for
bifurcation. The model relates the zonal wind and layer thickness at the equator. We
then determine which zonal wind values result in steady states for a given set of param-
eters. These equilibrium solutions suggest parameter ranges where multiple equilibria
are expected in the full model.

The relation of equatorial zonal wind, ug, to equatorial layer thickness, hg, can be
explored using a simple Hadley cell model similar to the one used in Held and Hou
(1980). The domain is divided into two regions. Close to the equator, the thickness,
hm, is in geostrophic balance with the angular momentum conserving wind:

_ug +Qa sin? ¢
N cos ¢ ’

(8)

Um

Integrating the geostrophic terms in Equation 3 using the small angle approximation

and the fact that ug << Qa,
2 4
hm = ho — @ [UO— + Qa—] . 9
g* 2 4

Towards the poles, the thickness is just the “radiative equilibrium” solution, A,
(Equation 5). The thickness transitions from one solution to the other at the critical

latitude, ¢., where it is continuous:

heq(¢c) = hm(¢c)- (10)



In addition, mass conservation requires

[o® bc
/ heq cos pdep = / hm cOS pd . (1)
0 0

Assuming uy << Qa, hoeqg = hg, and ¢. << 1, we obtain equations for the

critical latitude and the thickness at the equator in terms of u:

5U() — Ug
2 _ Y 7Ueq
& 3 Qa

5

@(erq — U0)2. (12)

hO - hOeq = -

Note that to get a real value for ¢., ug must be less than wg.q.

Figure 1 compares the full model to the simple Hadley cell model for the case
of no forcing (corresponding to ug = 0). Near the equator, the full model thickness
closely follows the angular momentum conserving solution; it transitions to the radia-
tive equilibrium solution slightly poleward of the critical latitude. The full model does
not exactly match the simple analytical model because it does not completely conserve
angular momentum, due to friction and the flux of momentum from the lower layer.
Nevertheless, the simple Hadley cell model seems a reasonable approximation to the
full system of equations.

To obtain a steady state in the presence of forcing, the applied torque at the equator
must balance deceleration caused by friction and momentum exchange with the lower
layer,:

hoes — h
F="000 700 4 kg (ho < hoeg)- (13)
T ho

The key assumption here is that we need to consider only the equatorial effects of the
drag due to momentum exchange with the lower layer. Away from the equator, we
continue to assume that angular momentum conservation is an adequate approxima-
tion.

Assuming the system is not far from radiative equilibrium, we approximate the

thickness in the denominator as a constant, h.,. (Retaining the variation of thickness
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in the denominator does not greatly alter the solution.) Nondimensionalizing by

ho = Hhpeq, up = Utipeg;

Equations 12 and 13 become:

1—H=pU —1)? (14)
1-H= % —r (15)
where
2
Uu
p:E Ocq , q= FT,r:kT.
18 g*h'Oeq UQeq

All three parameters are positive. ¢ is proportional to the imposed forcing, r to the
frictional damping, and p to the square of the Froude number at the equator in the
unforced radiative equilibrium solution.

Combining Equations 14 and 15 to obtain a cubic equation,

U3—2U2+U(1+5>—g:o. (16)
b b

The system is governed by two non-dimensional parameters, r/p and ¢/p. The equa-

tion has three real solutions when
1 1r\° 1 1 1q\2
(——+—I> +(____f+_g) < 0. an

Otherwise, there is only one real solution, and we do not expect multiple equilibria in
our model. Note that valid solutions are within therange U < 1and 0 < H < 1, since

our analytical model requires that ug < ugeq and 0 < kg < hoeq-
[Figure 2 about here.]

Figure 2 shows the parameter region where the simple model predicts multiple
equilibria. There are three solutions in this region. If one adds time dependence to

this analytical model by including the time derivative of the angular momentum at the
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equator in the equatorial momentum budget, one finds that the solution corresponding
to the smallest ug is stable while the middle solution is unstable. (The stability of the
solutions of the analytical model can be verified using a potential function (J. Moehlis,
personal communication)). Model runs that start with initial conditions between the
lowest and the middle solutions will equilibrate to the lowest superrotating state.

The third solution (highest ug) is also stable, thus we expect the system to go to
this state if the initial conditions are above the middle solution. However, the solution
with the highest uq obtained with our analytical model is often not valid because u >
Upeq, and therefore, the Hadley cell model (Equation 12) is no longer valid. The full
system (described in the next section) still equilibrates, but we do not offer a simple
quantitative model of the final equilibrated strongly superrotating state.

In order to understand the transition to the strongly superrotating state, we further
examine the relationship between the zonal wind and the deceleration by the upward
branch of the Hadley cell. As the forcing increases, uq increases, which in turn de-
creases the Hadley circulation. The resulting deceleration of the zonal wind by the
Hadley cell depends on the vertical mass flux, which decreases as the zonal wind in-
creases, and the vertical wind shear, which increases as the zonal wind increases. To
determine the net effect of the zonal wind on R, we use Equation 12 to solve for R

(Equation 7) in terms of wuy:

_ _ 2
R = Yo [Z5(uoeg —u0)*] (18)
T 189*h0eq

[Figure 3 about here.]

The dashed line in Figure 3 shows the response of R to ug. When wug is small, R
decreases as w increases. R reaches its minimum value when ug = wugeq/3 (U = 1/3).
When U is greater than this value, R becomes less negative. Thus, in the frictionless
case, we expect the deceleration caused by the upward branch of the Hadley cell to no

longer be able to balance increases in applied forcing when U = 1/3.
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When both friction and the vertical advection of momentum are included (solid

line in Figure 3), the maximum and minimum decelerations are found at

3
oo 2EVI T

3
The minus sign corresponds to the maximum weakly superrotating U, where the de-
celeration terms begin decreasing in magnitude with increasing U, while the upper
value (assuming it is valid) corresponds to the minimum strongly superrotating U,
where the deceleration terms begin increasing in magnitude with decreasing U. When
% > % U never jumps to a different branch as the flow is too frictionally dominated.

Using the variable values listed in Section 2, the non-dimensional parameters are
p = 0.0772, r = 0.008, and ¢ = 13333 x Fy. The asterisks and x’s in Figure 4 show
the steady states in the simple model. The asterisks correspond to stable solutions,
while the x’s indicate unstable solutions. The maximum U on the lower branch is
0.39, corresponding to an applied forcing of 10.1 x 107 ms=2. The minimum U on
the upper branch is 0.94 (Fy = 5.8 x 10~7 ms~2). For this set of parameters, there are
valid upper branch solutions (i.e., where U < 1) for a small range of applied forcing.
However, most of the upper branch solutions are invalid.

Thus, the simple model predicts an abrupt transition from weak to strong superro-
tation. However, the model does not always predict valid strongly superrotating states,
since Held-Hou theory no longer applies. Furthermore, the simple model unrealisti-
cally assumes that the applied forcing affects the angular momentum budget only at
the equator. Finally, the statements concerning the stability of the different equilibria
in the analytical model ignore the time dependence associated with the adjustment of
the Hadley cell to these equatorial conditions. To address these limitations, we explore

the behavior of an axisymmetric atmosphere using a computational model.
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4. Resultsfrom the full model

[Figure 4 about here.]

We next look for multiple equilibria in the full model by integrating our shallow
water system to steady states using different initial conditions and forcing magnitudes.
We sampled the forcing in increments of 2 x 10=8 ms=2. There are two distinct
branches of solutions, one similar to the simple angular momentum conserving Hadley
cell model (weakly superrotating) and one strongly superrotating. The open circles
in Figure 4 show how U changes with the forcing. As the forcing increases from
zero, the zonal wind increases, abruptly transitioning to strong superrotation at Fy =
9.2 x 107 ms~2. When the forcing is subsequently decreased, the model remains
strongly superrotating until the forcing is reduced to 7.6 x 10=7 ms~2. The results can
be classified into four regions of different behavior depending on the magnitude of the

forcing at the equator, Fj:

1. For small forcing, there is only one stable solution, with a small zonal velocity
at the equator. The zonal wind and layer thickness approximately agree with the
simple analytical Hadley cell model; near the equator, angular momentum is ap-
proximately conserved. At the equator, the thickness relaxation term (Equation
7) in the zonal momentum equation (Equation 2) increases with increasing F,
and friction is weak. The dashed lines in Figure 5 show a sample steady solution

in this region.
[Figure 5 about here.]

2. For somewhat higher forcing, the system has two steady solutions. The lower
branch approximates the Hadley cell model, while the upper branch has a very
weak Hadley circulation. The upper solution layer thickness is close to the equi-
librium thickness; the zonal momentum is far from angular momentum conser-

vation; and the meridional wind is small. In the lower branch, similar to region
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1, equatorial relaxation towards radiative equilibrium always increases in mag-
nitude and dominates friction, while in the upper branch, the magnitude of R
decreases so that it is similar to the frictional term. The dash-dot lines in Fig-
ure 5 show a sample steady lower branch solution while the dotted lines show a

steady upper branch solution in this region.

. When the forcing is further increased, the system has only one steady state,
which is similar to the upper solution of Region 2. As the forcing increases,
an equatorial jet develops and strengthens. w is generally above w4, but i is
always below h,. The Hadley cell is weak but still present. The relaxation term
always decreases with increasing F', so the friction term dominates by the high
end of the region. The thin solid lines in Figure 5 show a sample steady solution

in this region.

. For the highest values of the forcing, hg is above hg.q. This corresponds to a
collapse of the Hadley circulation, with sinking at the equator and rising slightly
poleward of the equator. Thus the only zonal momentum tendency term which

can balance the forcing is friction, and ug has only one possible value:

Fy
Uy = —5—-

k

Near the equator, the meridional winds reverse direction, flowing towards the
equator rather than away. The equatorial jet is very strong. The thick solid lines

in Figure 5 show a sample steady solution in this region.

The location of the multiple steady equilibria region in the shallow water model is

thus within the predicted range (5.8 to 10.1 x 10~7 ms—2). However, the range is less

than that predicted by the simple model. For low values of the forcing F', the full model

closely follows the predictions of the simple model. As the full model approaches the

end of the lower branch, the solutions diverge since the simple model does not include

any off-equatorial forcing. The maximum U on the lower branch is 0.29, smaller than
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the predicted value (0.39). The upper branch solutions are very different, including the
minimum lower U (0.60), which is significantly lower than the predicted upper branch
minimum of 0.94. The full model can no longer be well approximated by Held-Hou
theory, since angular momentum is no longer conserved (see the dotted and solid lines
in Figure 5). In addition, the simple model predictions are not valid for most of the
upper branch solutions since U > 1. Thus, it is not surprising that the two models
produce different results for the upper branch.

Although the simple model assumes all momentum exchange occurs at the equator
and thus does not depend on the shape of the forcing (the exponent r. in particular), this
shape does affect the full model’s behavior to some extent by influencing the closeness
of the model to angular momentum conservation. As a result, similar runs (not shown)
with different values of n have different ranges of multiple equilibria. However, the
runs display qualitatively similar behavior.

Finally, we explore the system behavior as we vary the frictional parameter, k. As
k increases, the region of multiple equilibria contracts and moves to higher values of
the forcing F' until the system becomes too frictionally damped and no abrupt tran-
sition occurs, as predicted by the simple model. The transition to the single solution
region occurs for a smaller k than predicted by the simple model, consistent with the

smaller range of multiple equilibria found in the F' experiments of the full model.

5. Conclusions

Itis possible to get bifurcations in the superrotation strength of an axisymmetric model
for earth-like parameter ranges. When bifurcations exist, the stable equilibria lie along
two branches of zonal wind values as the forcing is changed. On the lower branch,
damping due to vertical advection of momentum by the Hadley cell increases with

increasing forcing; on the upper branch, the damping decreases with increasing forc-
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ing. Although the simple model approximately predicts where the full model will have
multiple equilibria, the range is smaller than predicted and depends on the shape of the
applied forcing. The presence and location of the bifurcation is related to how well
angular momentum is conserved in the tropics.

In our model, we directly apply a constant zonal acceleration centered around the
equator. This forcing term represents the net effect of all the processes not explicitly
included in the model, such as stationary and transient eddies, as well as transient
changes in the mean meridional circulation. Observed values of equatorial momen-
tum flux convergence for these processes range from about —10 x 10~ ms~2 for the
transient meridional circulation to +5 x 10~% ms—2 for stationary eddies (Lee, 1999).
Our model experiences an abrupt transition to superrotation when the net imposed ac-
celeration is equal to 7.6 x 10~7 ms—2, an order of magnitude less than the individual
terms. However, the vertical mass flux in the unforced model is very small compared
with the observed Hadley cell transport, as discussed in Section 2. Assuming the ratio
of the mass flux in the unforced model to the observed mass flux is approximately the
ratio of the model’s critical forcing to the actual critical forcing for the atmosphere,
the critical forcing for an abrupt transition is much larger for the real atmosphere.

In a zonally asymmetric atmosphere, other feedbacks, such as the feedback be-
tween zonal winds and deceleration due to eddy flux divergence, which are not in-
cluded in our model, may play the dominant role in an abrupt transition to superro-
tation. However, the feedback described here, between the wind speed and upward
advection of momentum by the Hadley circulation, is capable of producing an abrupt
transition in the absence of wave-mean flow interaction and may amplify transitions
to superrotation in a zonally asymmetric atmosphere.

While abrupt transitions to superrotation are found in simplified models, they have
not yet been found in comprehensive GCMs. Weak superrotation, on the other hand,

has been observed. For example, Huang et al. (2001) found slight superrotation in a
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coupled GCM climate change simulation with tripled C05. More work is necessary
to determine if an abrupt transition to strong superrotation is possible in the terrestrial

setting.
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Figure Captions

Figure 1 Steady state of the model with no forcing. The solid lines are
the computational model results. The dotted lines indicate thickness and zonal
winds from momentum conservation, and the dashed lines are the radiative
equilibrium profiles. High latitude results are omitted in this and all future
figures, since the zonal and meridional winds are zero and the thickness is con-
stant.

Figure 2 Region of multiple equilibria in the analytical model. The dark
region indicates values of ; and % for which there exist multiple equilibria. ¢
corresponds to the strength of the applied forcing; » corresponds to the friction;
and p relates to the Hadley circulation.

Figure 3 Equatorial angular momentum terms as a function of .

Figure 4 Nondimensional zonal wind at the equator for a range of equato-
rial forcing values. Circles correspond to full model results, asterisks to stable
solutions of the analytic model, and x’s to unstable solutions. Analytic solu-
tions with U > 1 are not valid and are shown for illustrative purposes only.
Figure 5 Model steady states for Fy = 2 x 10~7 ms~2 (dashed), 8 x 10~
ms~2 lower branch (dash dot), 8 x 10~" ms~2 upper branch (dotted), 9.6 x 10~7
ms~2 (thin), and 12 x 10~ ms~2 (thick).
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Figure 1: Steady state of the model with no forcing. The solid lines are the computational
model results. The dotted lines indicate thickness and zonal winds from momentum con-
servation, and the dashed lines are the radiative equilibrium profiles. High latitude results

are omitted in this and all future figures, since the zonal and meridional winds are zero and

the thickness is constant.

-25 -20 -15
Latitude

-35 -30

20



0.5

0.45

0.4

0.3

0.1 0.2 0.3 0.4 0.5
rlp

Figure 2: Region of multiple equilibria in the analytical model. The dark region indicates
values of : and % for which there exist multiple equilibria. ¢ corresponds to the strength of

the applied forcing; r corresponds to the friction; and p relates to the Hadley circulation.
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Figure 3: Equatorial angular momentum terms as a function of w.
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Figure 4: Nondimensional zonal wind at the equator for a range of equatorial forcing val-
ues. Circles correspond to full model results, asterisks to stable solutions of the analytic
model, and x’s to unstable solutions. Analytic solutions with U > 1 are not valid and are

shown for illustrative purposes only.
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Figure 5: Model steady states for Iy = 2x 10~ ms~2 (dashed), 8 x 10~7 ms~2 lower branch
(dash dot), 8 x 10~7 ms=2 upper branch (dotted), 9.6 x 10~ ms=2 (thin), and 12 x 10~
ms~2 (thick).
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